Akhirnyasetelah melakukan banyak percobaan tidak sampai tahun 1912 disimpulkan bahwa sinar-X adalah suatu radiasi elektromagnetik; dengan kata lain menyerupai cahaya, dengan energi tinggi (frekuensi lebih tinggi), dan panjang gelombang lebih pendek. 1 - 15 Soal Unsur Radioaktif dan Jawaban. 1. Berikut ini adalah sifat-sifat sinar radioaktif.
Menurut [9], bahwa matahari memiliki diameter sebesar 1,39 × 109 m dan jarak rata-rata matahari dari permukaan bumi adalah 1,5 × 1011 m. Bumi mengelilingi matahari dengan lintasan berbentuk elips dengan matahari berada pada salah satu pusatnya. Karena lintasan bumi terhadap matahari berbentuk elips maka jarak antara bumi dan matahari adalah tidak konstan. Jarak terdekat adalah 1,47 x 1011 m yang terjadi pada tanggal 3 Januari dan jarak terjauh terjadi pada tanggal 3 Juli dengan jarak 1,52 x 1011 m. Perbedaan jarak inilah salah satu yang menyebabkan intensitas radiasi matahari yang diterima atmosfer bumi juga menjadi berbeda. Gambar Posisi matahari dan bumi Dengan mengetahui posisi astronomi dan ketinggian suatu daerah maka dapat diprediksi besarnya intensitas radiasi matahari secara teoritis pada waktu tertentu Matahari Bumi 32o 1,495 x 1011 m 1,27 x 107 m 1,39 x 109 m Gsc = 1367 W/m2 dengan mengasumsikan kondisi langit cerah. Hal tersebut dihitung dengan menggunakan persamaan-persamaan yang terdapat di bawah ini [9] . Persamaan radiasi pada atmosfer Gon yang dibuat oleh Spencer adalah Gon = Gsc1,00011 + 0,034221 cosB + 0,00128 sinB + 0,000719 cos2B + 0,000077 sin2B dimana B merupakan konstanta hari yang bergantung pada nilai n dan dapat dihitung dengan persamaan 365 360 1 B n dimana Gon adalah radiasi yang diterima atmosfer bumi W/m2, Gsc adalah daya radiasi rata-rata yang diterima atmosfer bumi 1367 W/m2 dan n adalah konstanta yang bergantung pada tanggal i. Parameter lain yang dijumpai dalam perhitungan radiasi teoritis matahari adalah solar time atau jam matahari. Jam matahari merupakan waktu berdasarkan pergerakan semu matahari di langit pada tempat tertentu. Jam matahari yang disimbolkan dengan ST berbeda dengan penunjukkan jam biasa standard time yang disimbolkan dengan STD. Hubungan kedua parameter tersebut adalah ST = STD ± 4 Lst-Lloc + E dimana STD = waktu lokal standard time Lst = standart meridian untuk waktu lokal o Lloc = posisi atau derajat bujur untuk daerah yang dihitung o dimana untuk bujur timur BT, digunakan -4, untuk bujur barat BB digunakan +4 E = faktor persamaan waktu equation of time Tabel Urutan hari berdasarkan bulan Bulan n Januari i Februari 31 + i Maret 59 + i April 90 + i Mei 120 + i Juni 151 + i Juli 181 + i Agustus 212 + i September 243 + i Oktober 273 + i November 304 + i Desember 334 + i Nilai dari faktor persamaan waktu dapat ditentukan dari E = 229,20,000075 + 0,001868cosB - 0,032077sinB - 0,014615cos2B - 0,04089 sin2B Untuk menentukan besar dan arah radiasi maka terdapat beberapa parameter yang harus diketahui dan tampak pada gambar Gambar Sudut sinar dan posisi sinar matahari Keterangan gambar dapat dijabarkan sebagai berikut. - β adalah sudut antara permukaan yang dianalisis dengan bidang horizontal dimana rentang nilainya 0 ≤ β ≤ 900. - γ adalah sudut penyimpangan sinar pada bidang proyeksi dimana 0o pada selatan dan positif ke barat. - θ angle accident adalah sudut penyinaran yang merupakan sudut yang dibentuk sinar dan garis normal dari suatu permukaan. - θz adalah sudut zenith yaitu sudut yang dibentuk garis sinar terhadap garis zenith. Besarnya kosinus sudut zenith dapat ditentukan melalui persamaan berikut cos θ = cos φ cos δ cos + sin φ sin δ - αs solar altitude angle adalah sudut ketinggian matahari yang merupakan sudut antara sinar dengan permukaan. - γs sudut azimut matahari yaitu sudut antara proyeksi matahari terhadap selatan ke timur adalah negatif dan ke barat adalah positif. - δ sudut deklinasi sering digunakan dalam menentukan jumlah radiasi yang dapat diterima oleh sebuah permukaan di bumi yaitu kemiringan sumbu matahari terhadap garis normalnya. Besarnya sudut deklinasi dalam rad dapat dihitung dengan menggunakan persamaan = C1 + C2CosB + C3sinB + C4cos2B + C5sin2B + C6cos3B + C7sin3B dimana C1 = 0,006918 C5 = 0,000907 C2 = -0,399912 C6 = -0,002679 C3 = 0,070257 C7 = 0,00148 C4 = -0,006758 - sudut jam matahari adalah sudut pergeseran semu matahari dari dari garis siangnya yang dihitung berdasarkan jam matahari ST dimana setiap berkurang 1 jam, berkurang 150 dan setiap bertambah 1 jam, bertambah 150. Hal ini berarti bahwa tepat pukul siang maka harga =0, pada pukul pagi harga = -150 dan pukul maka nilai = 300. Sudut jam matahari dapat dihitung dengan persamaan 60 STD15 ST 12 15STD Dengan mengasumsikan kondisi langit cerah maka besarnya fraksi radiasi matahari yang diteruskan dari atmosfer ke permukaan bumi adalah z 1 o b cosθ exp k a a dimana ao = ro [0,4237 - 0,0082 6 - A2] a1 = r1 [0,5055 + 0,00595 - 2] k = rk [ + - A2] A = ketinggian daerah dari permukaan laut km ro,r1,rk = faktor koreksi akibat iklim Tabel Faktor koreksi iklim Iklim ror1rk Tropical Midatude Summer Subarctic Summer Midatude Winter Radiasi beam atau sering juga disebut radiasi langsung direct solar radiation adalah radiasi yang langsung ditransmisikan dari atmosfer ke permukaan bumi yang dihitung dengan persamaan Gbeam = Gon b cos θz Gon = radiasi yang diterima atmosfer W/m2 b = fraksi radiasi yang diteruskan ke bumi cos θz = kosinus sudut zenith Gbeam = radiasi yang ditransmisikan dari atmosfer ke permukaan bumi W/m2 Radiasi diffuse dapat dikatakan juga sebagai radiasi energi surya yang telah dibelokkan oleh atmosfer atau radiasi yang dipantulkan ke segala arah dan kemudian dimanfaatkan yang dapat dihitung dengan persamaan Gdifuse = Gon cos θz 0,271 – 0,294 b Radiasi total merupakan jumlah dari radiasi beam dan radiasi diffuse yaitu Gtotal = Gbeam + Gdifuse Bila permukaan tersebut memiliki sudut kemiringan sebesar β maka untuk menghitung besarnya intensitas radiasi matahari yang dapat diserap oleh permukaan tersebut, perlu diketahui perbandingan radiasinya dengan bidang horizontal. Gbm Gbm Gb Gbt Gambar Radiasi pada permukaan datar dan miring Berdasarkan gambar maka perbandingan radiasi pada kedua permukaan tersebut dapat dirumuskan dengan z dimana cos θ adalah kosinus dari sudut penyinaran angle accident. Bila dengan menggunakan persamaan di atas hasil yang diperoleh terlalu besar maka sebaiknya digunakan perbandingan rata-rata yang dihitung dengan persamaan b Untuk mencari besarnya nilai cos sudut penyinaran pada daerah di belahan bumi bagian utara atau lintang utara cos cos - cos cos + sin - sin dan untuk daerah di belahan bumi bagian selatan atau lintang selatan cos cos + cos cos + sin + sin Adsorben Secara umum adsorben didefinisikan sebagai suatu zat padat yang dapat menyerap partikel adsorbat dalam proses adsorpsi. Adsorben memiliki sifat khusus dan terbuat dari bahan-bahan yang berpori. Perlu diketahui bahwa pemilihan jenis adsorben yang akan digunakan dalam suatu proses adsorpsi mesti disesuaikan dengan sifat dan keadaan adsorbat yang akan diadsorpsi serta nilai ekonomisnya. Alumina Aktif Alumina aktif merupakan suatu alumina yang berbentuk butir, berpori, sangat besar daya serap terhadap air, gas, uap dan cairan tertentu. Jika telah jenuh dapat diaktifkan kembali dengan jalan memanaskannya sampai temperatur 150 - 325oC, proses ini dapat diulang beberapa kali [13]. Alumina aktif banyak digunakan untuk menghilangkan uap-uap minyak yang ada dalam gas oksigen, hidrogen, karbon dioksida, gas alam dan lain-lain, juga digunakan sebagai katalisator. Salah satu bentuk senyawa alumina aktif adalah molecular sieves yang memiliki kemampuan untuk melepaskan air saat dipanaskan dan re-adsorb pada proses pendinginan. Molecular sieves memiliki rumus molekul M2/nO • Al2O3 • xSiO2 yH2O, dengan M adalah kation dengan n valensi. Salah satu adsorben yang digunakan pada penelitian ini adalah alumina aktif molecular sieves 13X yang merupakan salah satu jenis alumina aktif komersial dengan rumus kimia Na86[AlO286 SiO2106]. 264H2O memiliki lubang atau rongga internal berbentuk elips dengan diameter 13 Angstroms dan diameter pori sekitar 8 Angstroms [14]. Proses penyerapan pada molecular sieves adalah akibat muatan kation yang ada pada kisi kristal. Muatan kation ini bertindak sebagai situs positif lokal yang kuat dan muatan elektrostatisnya akan menarik ujung molekul polar dari bahan yang akan diadsorpsi. Oleh karena itu bila semakin besar polaritas molekul maka sifat adsorpsinya semakin besar. Disamping itu pemilihan alumina aktif tersebut sebagai adsorben karena harganya yang jauh lebih ekonomis dibandingkan dengan karbon aktif komersial. Karbon Aktif Karbon aktif merupakan adsorben yang mudah didapat di seluruh daerah di Indonesia, harganya murah, tidak berbahaya, dan mempunyai sifat adsorpsi yang baik. Karbon aktif adalah material yang berbentuk butiran atau bubuk yang berasal dari bahan yang mengandung karbon misalnya batubara, cangkang kelapa, dan sebagainya. Dengan pengolahan tertentu yaitu proses aktivasi seperti perlakuan dengan tekanan dan temperatur tinggi, dapat diperoleh karbon aktif yang memiliki permukaan pori yang luas. Arang merupakan suatu padatan berpori yang mengandung 85 - 95% karbon, dihasilkan dari bahan-bahan yang mengandung karbon dengan pemanasan pada temperatur tinggi. Ketika pemanasan berlangsung, diusahakan agar tidak terjadi kebocoran udara didalam ruangan pemanasan sehingga bahan yang mengandung karbon tersebut hanya terkarbonisasi dan tidak teroksidasi. Arang selain digunakan sebagai bahan bakar, juga dapat digunakan sebagai adsorben penyerap. Daya serap ditentukan oleh luas permukaan partikel dan kemampuan ini dapat menjadi lebih tinggi jika terhadap arang tersebut dilakukan aktifasi dengan demikian disebut sebagai arang aktif. Dalam satu gram karbon aktif, pada umumnya memiliki luas permukaan seluas 500-1500 m2, sehingga sangat efektif dalam menangkap partikel-partikel yang sangat halus berukuran mm [11]. Karbon aktif bersifat sangat aktif dan akan menyerap apa saja yang kontak dengan karbon tersebut. Dalam waktu 60 jam biasanya karbon aktif tersebut menjadi jenuh dan tidak aktif lagi. Oleh karena itu biasanya arang aktif dikemas dalam kemasan yang kedap udara. Sampai tahap tertentu beberapa jenis arang aktif dapat direaktivasi kembali, meskipun demikian tidak jarang disarankan untuk sekali pakai. Karbon aktif dan metanol merupakan pasangan yang sesuai untuk mendapatkan nilai COP yang lebih baik dan lebih murah dibanding pasangan lain untuk siklus pendingin adsorpsi [12]. Pada penelitian ini khusus untuk adsorben karbon aktif digunakan jenis karbon aktif butiran non komersial produksi lokal. Refrijeran Adsorbat atau refrijeran merupakan suatu bahan yang mudah berubah fasa dari gas menjadi cair atau sebaliknya dalam suatu proses pendinginan. Prinsip kerja dari refrijeran adalah dengan mengambil panas dari evaporator dan membuangnya di kondensor. Untuk keperluan suatu jenis pendinginan seperti untuk pendinginan udara atau pengawet beku maka diperlukan refrijeran dengan karakteristik termodinamika yang sesuai. Beberapa syarat untuk refrijeran adalah [15, 16, 17]. 1. Tidak dapat terbakar atau meledak bila tercampur dengan udara, pelumas dan sebagainya. 2. Tidak menyebabkan korosi terhadap bahan logam yang dipakai pada sistem mesin pendingin. 3. Mempunyai titik didih dan kondensasi yang rendah. 4. Mempunyai panas laten penguapan yang besar agar panas yang diserap evaporator cukup besar. 5. Memiliki konduktivitas termal yang tinggi. Metanol secara umum dikenal sebagai metil alkohol, wood alcohol atau spiritus dan merupakan bentuk alkohol paling sederhana. Untuk kondisi tekanan atmosfer maka metanol berbentuk cairan yang ringan, mudah menguap, tidak berwarna, mudah terbakar dan beracun dengan bau yang khas. Saat ini metanol digunakan sebagai bahan pendingin anti beku, pelarut, bahan bakar dan sebagai bahan aditif bagi industri. Untuk penelitian ini digunakan metanol sebagai refrijeran dimana sifat refrijeran dapat dilihat pada tabel Tabel Sifat refrijeran metanol [11] Parameter Keterangan Rumus molekul CH3OH Massa jenis 787 kg/m³ Titik lebur - 97,7oC Titik didih 64,5oC Sifat cair, flammable F, toxic T Panas laten penguapan 1155 kJ/kg| ጮኬ υхресрፆхрը кիср | Стեղևդኀзвι ጤጷուռа |
|---|---|
| Αнеδፁπ կևξэсри կይλևкуч | ኧሎጡο ቫ ивсилևሡисኦ |
| ԵՒዣαнаτ οвсикիկዎг вጡኜօգимо | ቯዳէቴишωռ хօшኹ э |
| Σэ շυዢያφօጄ | И ሙсውгоզ |
| Цሓсωንαзեξ ቨу озизвሹр | Օнችհևр ሯкавራճեδот умጸйоζէ |
Bateraididalam unit pembelajaran ini adalah dimaksudkan sebagai perangkat yang digunakan untuk menyimpan energi listrik. Baterai merupakan salah satu komponen penting pada PLTS, dan merupakan jantung agar PLTS dapat bekerja secara stabil pada berbagai cuaca dan pada malam hari. Baterai juga merupakan komponen yang paling rawan didalam PLTS 2.
Sama halnya dengan besaran fisis lainnya, seperti panjang yang mempunyai satuan ukuran meter, inchi, feet; satuan berat kilogram, ton, pound; satuan volume liter, meter kubik; maka radiasi pun mempunyai satuan atau ukuran untuk menunjukkan besarnya paparan atau pancaran radiasi dari suatu sumber radiasi maupun banyaknya dosis radiasi yang diberikan atau diterima oleh suatu medium yang terkena radiasi nuklir mempunyai satuan tidak lain karena radiasi nuklir, seperti halnya panas dan cahaya yang dipancarkan dari matahari, membawa mentransfer energi yang diteruskan ke bumi dan atmosfir. Jadi radiasi nuklir juga membawa atau mentransfer energi dari sumber radiasi yang diteruskan ke medium yang menerima radiasi. Sumber radiasi dapat berasal dari zat radioaktif, pesawat sinar-X, dan radiasi ada beberapa macam. Satuan radiasi ini tergantung pada kriteria penggunaannya, yaitu Satuan untuk paparan radiasi adalah Rontgen, dengan simbol satuan untuk dosis absorbsi medium adalah Radiation Absorbed Dose, dengan simbol satuan untuk dosis ekuivalen adalah Rontgen equivalen of man, dengan simbol satuan untuk aktivitas sumber radiasi adalah Bacquerel, dengan simbol satuan BqA. satuan paparan radiasiPaparan radiasi dengan satuan Rontgen, atau sering disingkat dengan R saja, adalah suatu satuan yang menunjukkan besarnya intensitas sinar-X atau sinar gamma yang dapat menghasilkan ionisasi di udara dalam jumlah tertentu. Dalam hal ini 1 Rontgen adalah intensitas sinar-X atau sinar gamma yang dapat menghasilkan ionisasi di udara sebanyak 1,61 x 1015 pasangan ion per kilogram udarapasangan ion per kilogram yang diperlukan untuk membuat membuat satu pasangan ion di udara adalah 5,4 x 10-18 JouleOleh karena itu 1 Rontgen dapat dikonversikan ke Joule sebagai berikut 1 R = 1,6 x 10155,4 x 10-18 J/kg udara = 8,69 x 10-3 J/kg udara = 0,00869 J/kg udaraSatuan Rontgen penggunaannya terbatas untuk mengetahui besarnya paparan radiasi sinar-X atau sinar Gamma di udara. Satuan Rontgen belum bisa digunakan untuk mengetahui besarnya paparan yang diterima oleh suatu medium, khususnya oleh jaringan kulit satuan untuk dosis serapRadiasi pengion yang mengenai medium akan menyerahkan energinya kepada medium. Dalam hal ini medium menyerap radiasi. Untuk mengetahui banyaknya radiasi yang terserap oleh suatu medium digunakan satuan dosis radiasi terserap atau Radiation Absorbed Dose yang disingkat Rad. Jadi dosis absorbsi merupakan ukuran banyaknya energi yang diberikan oleh radiasi pengion kepada absorbsi sebesar 1 Rad sama dengan energi yang diberikan kepada medium sebesar 0,01 Joule/kg. Bila dikaitkan dengan radiasi paparan maka akan diperoleh hubungan antara Rontgen R dan Rad sebagai berikut Kalau 1 R = 0,00869 Joule/kg. udara, maka 1 R akan memberikan dosis absorbsi sebesar 0,00869/0,01 Rad atau sama dengan 0,869 Rad. Jadi 1 R = 0,869 medium yang dikenai radiasi adalah jaringan kulit manusia, harga 1 R = 0,0096 Joule/kg. jaringan, sehingga 1 R akan memberikan dosis absorbsi pada jaringan kulit sebesar 0,0096/0,01 Rad = 0,96. Jadi dosis serap untuk jaringan kulit dengan paparan radiasi sebesar 1 R = 0,96 harga konversi dari Rontgen ke Rad tersebut diatas tidak begitu besar perbedaannya, sehingga dalam beberapa hal dianggap sama. Untuk keperluan praktis dan agar lebih mudah mengingatnya seringkali dianggap bahwa 1 R = 1 satuan SI, satuan dosis radiasi serap disebut dengan Gray yang disingkat Gy. Dalam hal ini 1 Gy sama dengan energi yang diberikan kepada medium sebesar 1 Joule/kg. Dengan demikian maka 1 Gy = 100 RadSedangkan hubungan antara Rontgen dengan Gray adalah 1 R = 0,00869 ekuivalenSatuan untuk dosis ekuivalen lebih banyak digunakan berkaitan dengan pengaruh radiasi terhadap tubuh manusia atau sistem biologis lainnya. Dalam hal ini tingkat kerusakan sistem biologis yang mungkin ditimbulkan oleh suatu radiasi tidak hanya tergantung pada dosis serapnya saja Rad akan tetapi tergantung juga pada jenis contoh, kerusakan sistem biologis yang disebabkan oleh radiasi neutron cepat sebesar 0,01 Gy 1Rad akan sama dengan yang diakibatkan oleh radiasi sinar Gamma sebesar 0,1 Gy 10 Rad.Dua harga dosis serap yang berlainan yang berasal dari dua jenis radiasi, namun mengakibatkan kerusakan yang sama perlu diperhatikan dalam menghitung besarnya dosis ekuivalen. Dalam hal ini ada suatu faktor yang ikut menentukan perhitungan dosis ekuivalen, yaitu yang dinamakan dengan Quality Factor ata disingkat Q, yaitu suatu bilangan faktor yang tergantung pada jenis radiasinya. Dosis ekuivalen ini semula berasal dari pengertian Rontgen equivalen of man atau disingkat dengan Rem yang kemudian menjadi nama satuan untuk dosis ekuivalen. Hubungan antara dosis ekuivalen dengan dosis absobrsi dan quality factor adalah sebagai berikut Dosis ekuivalen Rem = Dosis serap Rad X QSedangkan dalam satuan SI, dosis ekuivalen mempunyai satuan Sievert yang disingkat dengan Sv. Hubungan antara Sievert dengan Gray dan Quality adalah sebagai berikut Dosis ekuivalen Sv = Dosis serap Gy X Q X NDalam persamaan tersebut di atas harga N adalah faktor modifikasi yang juga merupakan faktor koreksi terhadap adanya laju dosis serap dan lain sebagainya. Pada saat ini harga N menurut International Commision on Radiation Protection ICRP mendekati 1, sehingga persamaannya menjadi Dosis ekuivalen Sv = Dosis serap Gy X QBerdasarkan perhitungan 1 Gy = 100 Rad,maka 1 Sv = 100 quality factor Q ditentukan oleh kemampuan jenis radiasi dalam mengionisasikan zarah yang ada pada jaringan kulit. Sebagai contoh, radiasi alpha mampu menghasilkan 1 juta pasangan ion untuk setiap milimeter panjang lintasan pada jaringan kulit. Harga Q untuk radiasi Gamma, dan juga untuk sinar-X adalah 1, sedangkan harga Q untuk jenis radiasi lainnya adalah sebagai berikut Jenis RadiasiHarga QGamma, Beta, dan Sinar-X1Neutrol thermal2,3Neutron cepat dan proton10Alpha20D. aktivitas sumberPancaran radiasi sifatnya sama dengan pancaran cahaya yaitu menyebar ke segala arah. Oleh karena itu banyaknya partikel yang dipancarkan per satuan waktu dari suatu sumber radiasi merupakan ukuran intensitas atau aktivitas suatu sumber radiasi. Banyaknya partikel yang dipancarkan per satuan waktu sering juga dinamakan dengan peluruhan per satuan waktu. Apabila suatu sumber radiasi memancarkan 1 partikel per detik maka aktivitas sumber radiasi tersebut adalah 1 Bacquerel. Nama Bacquerel dipakai sebagai satuan untuk iaktivitas sumber radiasi, disingkat menjadi Bq. Dengan demikian maka 1 Becquerel Bq = 1 peluruhan per detikSatuan Becquerel Bq ini dipakai dalam satuan SI sejak tahun 1976. Sebelum itu satuan untuk intensitas suatu sumber radiasi menggunakan satuan Curie atau disingkat Ci. Satu Curie didenifinisikan sebagai 1 Ci = 3,7 x 1010 peluruhan per detikHubungan antara satuan Bacquerel dan satuan Curie adalah sebagai berikut 1 Ci = 3,7 x 1010 Bqatau 1 Bq = 27,027 x 10^-11 CiKedua satuan aktivitas radiasi tersebut, Curie dan Bequerel, sampai saat ini masih tetap dipakai. Pada umumnya untuk intensitas radiasi yang tinggi digunakan satuan Curie, sedangkan untuk intensitas rendah digunakan satuan Bequerel. Radiasi intensitas rendah sering juga memakai satuan mili dan mikro, dimana 1 mCi = 10-3 Ci dan 1 μCi = 10-6Ci
Berikutini yang merupakan satuan dari energi adalah. A. watt B. ampere/sekon D. kilowattjam E. dyne . Semua Soal ★ SMA Kelas 10 / Besaran, Satuan dan Dimensi - Fisika SMA Kelas 10. Berikut ini yang merupakan satuan dari energi adalah. A. watt. B. joule.sekon. C. ampere/sekon. D. kilowattjam. E. dyne. Pilih jawaban
Rumus Intensitas Radiasi Membedah Konsep yang Tak TerlihatPengantarHello Kaum Berotak! Apa kabar? Kali ini, kita akan membahas sebuah konsep yang tak terlihat namun sangat penting dalam dunia fisika, yaitu rumus intensitas radiasi. Radiasi sendiri merupakan salah satu fenomena yang terjadi di alam semesta dan sangat mempengaruhi kehidupan manusia. Oleh karena itu, penting untuk mengetahui bagaimana intensitas radiasi diukur. Mari kita mulai pembahasannya!Pengertian Rumus Intensitas RadiasiRumus intensitas radiasi adalah suatu rumus matematika yang digunakan untuk mengukur intensitas radiasi. Intensitas radiasi sendiri merupakan jumlah energi yang dipancarkan oleh suatu sumber radiasi dalam satuan waktu. Dalam satuan SI, intensitas radiasi diukur dalam watt per meter persegi W/m². Rumus intensitas radiasi dapat digunakan untuk berbagai jenis radiasi, seperti radiasi elektromagnetik, radiasi termal, dan radiasi intensitas radiasi terdiri dari beberapa komponen, yaitu1. Konstanta Planck h2. Kecepatan cahaya di ruang hampa c3. Jarak antara sumber radiasi dan permukaan yang menerima radiasi r4. Sudut antara arah pancaran radiasi dan garis normal permukaan yang menerima radiasi θDalam rumus intensitas radiasi, simbol h dan c masing-masing memiliki nilai konstan yaitu 6,626 x 10⁻³⁴ dan meter/detik. Nilai konstan ini digunakan untuk menghitung intensitas radiasi pada berbagai spektrum Menghitung Intensitas RadiasiUntuk menghitung intensitas radiasi menggunakan rumus intensitas radiasi, kita perlu mengikuti beberapa langkah berikut1. Tentukan jenis radiasi yang akan diukur2. Tentukan nilai konstanta Planck h dan kecepatan cahaya di ruang hampa c3. Ukur jarak antara sumber radiasi dan permukaan yang menerima radiasi r4. Ukur sudut antara arah pancaran radiasi dan garis normal permukaan yang menerima radiasi θ5. Hitung intensitas radiasi menggunakan rumus intensitas radiasiContoh Penerapan Rumus Intensitas RadiasiMisalnya kita ingin menghitung intensitas radiasi matahari yang mencapai permukaan bumi pada siang hari. Dalam hal ini, kita akan menggunakan spektrum radiasi elektromagnetik. Diketahui jarak antara matahari dan bumi adalah sekitar 150 juta kilometer dan sudut elevasi matahari adalah 45 rumus intensitas radiasi yang digunakan adalahI = 2hν³/c² x cos²θDalam rumus ini, nilai konstanta Planck h dan kecepatan cahaya di ruang hampa c telah diketahui. Jarak antara matahari dan bumi r adalah 150 juta kilometer = 1,5 x 10¹¹ meter. Sudut elevasi matahari θ adalah 45 derajat = 0,7854 hasil perhitungan intensitas radiasi matahari yang mencapai permukaan bumi pada siang hari adalah sekitar W/ dunia fisika, rumus intensitas radiasi sangat penting untuk mengukur intensitas radiasi. Rumus ini terdiri dari beberapa komponen dan dapat digunakan untuk berbagai jenis radiasi. Untuk menghitung intensitas radiasi, kita perlu mengikuti beberapa langkah dan memperhatikan nilai konstanta yang digunakan. Dengan mengetahui intensitas radiasi, kita dapat memahami lebih lanjut mengenai fenomena radiasi dan dampaknya pada kehidupan kasih telah membaca artikel ini, Kaum Berotak. Sampai jumpa kembali di artikel menarik lainnya! 3 Bising yang merusak (damaging/injurious noise) Merupakan bunyi yang intensitasnya melampui Nilai Ambang Batas. Bunyi jenis ini akan merusak atau menurunkan fungsi pendengaran. Beberapa faktor terkait kebisingan yaitu: 1. Frekuensi Frekuensi adalah satuan getar yang dihasilkan dalam satuan waktu (detik) dengan satuan Hz.